Welcome to colomoto_jupyter’s documentation!#
Types#
- class colomoto.types.HypercubeCollection(iterable=(), /)[source]#
Bases:
list
- property is_single_state#
- match_state(ps)#
- class colomoto.types.State[source]#
Bases:
PartialState
- class colomoto.types.TrapSpacesAttractor(iterable=(), /)[source]#
Bases:
HypercubeCollection
miniBN#
- class colomoto.minibn.BaseNetwork(data=None, Symbol_class=<class 'boolean.boolean.Symbol'>, allowed_in_name=('.', '_', ':', '-'), **kwargs)[source]#
Bases:
dict
- biolqm_format = None#
- class colomoto.minibn.BlockParallelDynamics(spec, model, **opts)[source]#
Bases:
BlockSequentialDynamics
- class colomoto.minibn.BlockSequentialDynamics(sequence, model, loops=True)[source]#
Bases:
PeriodicDynamics
- class colomoto.minibn.BooleanNetwork(data=None, Symbol_class=<class 'boolean.boolean.Symbol'>, allowed_in_name=('.', '_', ':', '-'), **kwargs)[source]#
Bases:
BaseNetwork
- biolqm_format = 'bnet'#
- dynamics(update_mode='asynchronous', init=None, loops=None)[source]#
Returns a directed graph (networkx.DiGraph object) of the dynamics with the update_mode.
- Parameters:
update_mode – either “asynchronous” (or equivalently “fully-asynchronous”), “synchronous” (or equivalently “parallel”), “general”. Alternatively, it can be a function returning an
UpdateModeDynamics
object.init (dict[str,int]) – Optional initial state from which the dynamics is computed.
- propagate_constants()[source]#
- For each node having a constant function, replace references to that
node by the constant in the expression of all the other nodes.
Performs simple function simplification. Modifies the Boolean network in-place. The set of constant nodes can be accessed with the constants() method.
- class colomoto.minibn.ElementaryUpdateModeDynamics(model, min_u, max_u, **opts)[source]#
Bases:
UpdateModeDynamics
- class colomoto.minibn.FAsyncRun(model, init, k, seed=None)[source]#
Bases:
_RandomRun
Fully-asynchronous update run
Run at most k steps of an execution of given model from initial configuration init.
Stops at fixpoints.
- class colomoto.minibn.FullyAsynchronousDynamics(model, **opts)[source]#
Bases:
ElementaryUpdateModeDynamics
- class colomoto.minibn.GAsyncRun(model, init, k, seed=None)[source]#
Bases:
_RandomRun
(General) asynchronous update run
Run at most k steps of an execution of given model from initial configuration init.
Stops at fixpoints.
- class colomoto.minibn.GeneralAsynchronousDynamics(model, **opts)[source]#
Bases:
ElementaryUpdateModeDynamics
- class colomoto.minibn.MultiValuedNetwork(*args, **kwargs)[source]#
Bases:
BaseNetwork
- biolqm_format = 'mnet'#
- colomoto.minibn.ParallelDynamics#
alias of
SynchronousDynamics
- class colomoto.minibn.PeriodicDynamics(sequence, model, loops=True)[source]#
Bases:
UpdateModeDynamics
Periodic (deterministic) updating mode.
It is parameterized by a sequence of sets of nodes to update simultaneously in order to compute the next configuration.
- class colomoto.minibn.SequentialDynamics(sequence, model, **opts)[source]#
Bases:
BlockSequentialDynamics
- class colomoto.minibn.SyncRun(model, init, k)[source]#
Bases:
_Run
Synchronous update run
Run at most k steps of an execution of given model from initial configuration init.
Stops at fixpoints.
- class colomoto.minibn.SynchronousDynamics(model, loops=True, **opts)[source]#
Bases:
ElementaryUpdateModeDynamics
CellCollective#
- class cellcollective.CellCollectiveConnector(identifier, version=1)[source]#
- property sbml_basename#
- property sbml_urls#
- class cellcollective.CellCollectiveSBMLModel(localfile)[source]#
- property species#
Returns the set of defined species
- Return type:
set
- cellcollective.load(identifier, auto_persistent=True)[source]#
Load a CellCollective model from its URL or SBML export.
identifier can be: - a URL of the form
"cellcollective://{model_id}:{model_version}"
- the model URL from research.cellcollective.org - the location of the SBML file exported from CellCollectiveWhenever identifier is one of the two first cases, the module relies on the online API of CellCollective to download the SBML file. As the API may change over time, it is strongly recommended to rely on instead on downloaded SBML files and attach them with the notebook to ensure its repeatibility over time.
With the option
auto_persistent=True
, the module first looks for an existing downloaded SBML file. If it does not exists, it uses the online API to download it and move it alongside the notebook.